
InfoSecurity Professional • 28 • September/October 2016

O

N THE AGENDA at a recent security conference was a
session titled “Why Johnny Can’t Write Secure Code.”
The presenter designed the title to be tongue-in-cheek,
but it underscores a constant, growing issue: the lack
of security embedded into the software development
process. This is particularly problematic for those who

design web applications that are ripe for exploitation.
Last year’s Imperva Web Application Attack Report showed a threefold

increase in SQL injection attacks and a 2.5 times increase in cross-site scripting
attacks. The most recent Open for Web Application Security Project (OWASP)
list of the 10 most critical web application security vulnerabilities also highlights
how easy exploitation remains and shows the dire state of application security.

‘WHY JOHNNY CAN’T WRITE

SECURE CODE’
BY KEITH McMILLAN

›	 TECHNOLOGY

UNDERSTANDING
TODAY’S AGILE
SOFTWARE
DEVELOPMENT
CAN HELP MAKE
SECURITY A
BIGGER PART OF
THE APPLICATION
DEVELOPMENT
PROCESS.
ILLUSTRATION BY PETER AND MARIA HOEY

©2016 (ISC)2 Incorporated. All rights reserved.

https://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed6.pdf
http://www.veracode.com/directory/owasp-top-10

InfoSecurity Professional • 29 • September/October 2016

There are, however, opportunities for improvement.
They start with a more information security-centric under-
standing of what it means when teams and organizations
adopt agile software development practices. And to do that,
information security professionals should also work to bet-
ter understand today’s application development processes.

UNDERSTANDING AN
INCREASINGLY AGILE WORLD
“Agile” software development refers to a style rather than
a singular defined methodology. The “Manifesto for Agile
Software Development” summarizes agile development’s
basic tenets, and the “12 Principles Behind the Manifesto”
expands upon those core principles.

Based on that manifesto, an agile style of development
will include:

• A lightweight empirical process;
• Extensive and regular customer collaboration;
• Self-organizing and self-managing teams;
• Rapid feedback;
• Interpersonal communication;
• Just-in-time work;
• Limited documentation; and
• Measuring success based on working software.

There is no “one true agile”; multiple development pro-
cesses can and have truthfully claimed that they are agile.

GETTING INTO SCRUM WORK
According to Version One’s 10th Annual State of Agile
Survey, Scrum is currently the predominant form of agile
that companies have adopted (58 percent), with another 10
percent using a Scrum/XP (Extreme Programming) hybrid.

Scrum is a “process framework for complex product
development.” It focuses solely on project management and
says nothing about how the developers have actually writ-
ten the software. That’s one reason developers frequently
augment it with XP development practices.

In a Scrum/XP project, work to be done is described
as a “user story,” a short sentence describing the desired
functionality in business terms. It contains a role, a goal
and a reason. An example could be, “As a bank customer, I
want to withdraw funds from my checking account so I can
increase my cash on hand.” In a Scrum/XP project, user
stories replace all the traditional forms of requirements,
such as system functional specifications, business require-
ments documents (BRDs) or detailed requirements doc-
uments (DRDs). Some teams identify user stories before
they kick off a project, but they will identify additional
stories continuously throughout the project and add these

to the backlog. Since a user story describes a piece of func-
tionality, the team can develop and deliver it independently
of other stories.

Sometimes described as “a reminder to have a conversa-
tion,” user stories are placeholders for later collaboration.
Teams collect user stories in a “product backlog” and sort
them by order of priority. A business user of the system, or
their proxy, acts as a “product owner” and is responsible
for which user stories are in this backlog and for ordering
them based upon their business value. The product backlog
contains “everything that the team might work on.” All
the development work the team will undertake takes the
form of a user story in the backlog or as part of a user story.
There is no separate project plan or requirements docu-
ment, aside from the product backlog.

READY TO SPRINT
To deliver software early and continuously, scrum teams
work in “sprints,” or short iterations. Most teams today
are using one- to two-week sprints. In that time, the team
agrees to a scope of work for the sprint (based on which
user stories from the backlog they agree to deliver). Then
team members design, write code, test and deliver the user
stories as working software during the same sprint.

Because the user stories are light on specifics, the team
needs to have continuous access to the product owner to
discuss possible ways to achieve the business goal and to
verify that the completed function works to the business’
satisfaction.

“Agile approaches leverage ‘last responsible moment’
decision-making, allowing the latest, complete information
and data to guide us,” says Lowell Lindstrom, past man-
aging director of the Scrum Alliance and founder of the
Oobeya Group, an agile transformation services firm.

“As teams learn to use agile approaches, the skill and
discipline of how to defer a decision, and when not to, are
critical.”

At the start of the sprint, the team holds a sprint
planning ceremony and creates a sprint backlog. This
sprint backlog contains the user stories from the product
backlog the team is committing to deliver at the end of the
sprint. As part of sprint planning, the team will discuss
with the product owner what the user story entails, and
many groups will choose to document these as acceptance
criteria. Once the necessary parties commit to the scope of
a sprint, the scope does not change.

During the sprint, the team holds a daily stand-up meet-
ing, or “scrum,” at which time each person answers three
questions: “What did you do yesterday?” “What are you going
to do today?” and “Do you have any blockers?” The last ques-
tion refers to where the team needs help and what kind.

©2016 (ISC)2 Incorporated. All rights reserved.

http://agilemanifesto.org
http://agilemanifesto.org
http://www.agilemanifesto.org/principles.html
http://stateofagile.versionone.com/
http://stateofagile.versionone.com/

InfoSecurity Professional • 30 • September/October 2016

The daily scrum lasts no more than 15 minutes, and it’s
the primary coordination meeting for the team. It allows
everyone to know who’s working on what and what obsta-
cles the team is encountering. A person in a formal Scrum
role (the “scrum master”) takes ownership of resolving
any blockers and is responsible for making sure the team
follows the scrum process—including protecting the team
from outside interference during the sprint. The scrum
master, product owner and team are the only roles in a
scrum project.

At the end of the sprint, the team holds a sprint review,
also known as a “showcase” or “sprint demo meeting,”
for project stakeholders. The purpose is to show the user
stories they have completed, to preview upcoming work,
and to gather feedback from the stakeholders. As the rep-
resentative of the business on the team, the product owner
is typically responsible for this ceremony, although that

person may call on the team to assist.
More mature agile organizations are moving toward

scaling agile practices beyond the team. Many of these
approaches, such as the Scaled Agile Framework
(SAFe®), incorporate Scrum/XP practices at their core.
Understanding how to incorporate security requirements
into a Scrum/XP project is therefore foundational for
today’s security professional.

INCORPORATING SECURITY
REQUIREMENTS INTO A SCRUM PROJECT
User stories describe the entirety of work the team will
undertake, so user stories must incorporate security
requirements.

In a traditional style of development, a security require-
ment might take the form of a stand-alone functional

CYBER THREATS
KEEPING YOU
UP AT NIGHT?

sunera.com | 813.402.1208 | info@sunera.com

CYBER SECURITY
PENETRATION TESTING
PCI COMPLIANCE

IT RISK ASSESSMENTS
BUSINESS CONTINUITY
& DISASTER RECOVERY

©2016 (ISC)2 Incorporated. All rights reserved.

InfoSecurity Professional • 31 • September/October 2016

requirement, such as “all access to individually identifiable
patient data must be logged.” Using Scrum/XP, the user
story describing where such data is accessed will need to
include that sort of functionality.

Because the product owner is responsible for user
stories—including their priority in the backlog and what it
means to be “done” with them—the person filling this role
must have an appreciation of the security requirements.

Some teams find value in documenting nonfunctional
requirements, such as logging and performance, in a
common location for easier reference and updating. These
should not be thought of as stand-alone requirements but
rather as a reference the team should review as part of the
discussion of any user story and its acceptance criteria.
Sometimes a given requirement will apply to the story
in question. Sometimes the requirement may be slightly
different from standard performance requirements. And

sometimes it’s not in there at all.
When considering how to incorporate security require-

ments into user stories, it’s useful to think of a two-level
scheme for security requirements. At the upper level are
“capabilities” the system under development should have,
such as role-based access control, nonrepudiation or confi-
dentiality of data at rest.

When discussing a user story, the product owner and
team also should consider what a given capability means
in the context of this story. For instance, they should
ask, “Does this story require nonrepudiation?” Any such
requirements then become part of the acceptance criteria
for that story, and the team will need to verify them before
they consider the story complete.

“The development team can automate and test for many
of these broader, nonfunctional requirements through a
continuous integration process, allowing the security team

©2016 (ISC)2 Incorporated. All rights reserved.

InfoSecurity Professional • 32 • September/October 2016

to scale across projects,” says Ed Bellis, CTO at Kenna
Security and former CISO at Orbitz.

“There are hooks into CI servers to use tools such as
Gauntlet that allow the development team to perform
security testing of these requirements during integration,”
he continues. “A security team will need to rely on both tools
and appointed developers within the scrum in order to scale.”

Kathy Marshak, agile transformation coach and SAFe
program consultant trainer at Icon Technology Consulting,
offers some tips for integrating security-related require-
ments into a Scrum or SAFe project.

“Ensure that security experts understand agile fun-
damentals so they can participate in discussions about
definitions of ‘done’ and contribute to reusable acceptance
criteria,” she says. “Ensure that coding standards integrate
security practices [and that] such standards facilitate XP’s
‘collective code ownership’ practice. Encourage developers
who are skilled in writing secure code to pair with other
developers to spread the secure coding practices.”

Because they are business experts, some product owners
are not technical and may not understand what security
capabilities a system should possess and in which stories

they should appear. While a scrum team has a single prod-
uct owner, it makes no statements about who can provide
input to the product owner. In fact, the development team
frequently calls upon product owners to take input from
multiple stakeholders, and security is another voice provid-
ing input.

The product owner and team can call upon security pro-
fessionals to provide additional information as necessary;
however, this requires the product owner to appreciate
security’s importance in the development process. It’s our
job as security practitioners to make that case.

By incorporating security capabilities into the user sto-
ries in a Scrum/XP project, we dovetail with the way mod-
ern application development works. This avoids disruption
to the process and incorporates security requirements early
and throughout the development process. ●

KEITH McMILLAN, CISSP, is principal consultant at Adept Technol-
ogies. He provides agile coaching, comprehensive start-up CTO services
and application security architecture. He is a Certified Scrum Prac-
titioner and a Certified Scaled Agile Framework Program Consultant
(versions 3 and 4). He can be reached at kmcmillan@adeptechllc.com.

Agile. Any of a number of styles of
software project management that
emphasizes lightweight empirical
process; extensive and regular
customer collaboration; self-organiz-
ing and self-managing teams; rapid
feedback; interpersonal communica-
tion; just-in-time work; limited doc-
umentation; and measuring success
based on working software.

SAFe (Scaled Agile Framework).
An agile project management
approach that scales scrum/XP
across multiple teams and up
through business portfolios.

Scrum. An agile project manage-
ment approach formalized by Ken
Schwaber and Jeff Sutherland.

Scrum Master. Role on a scrum
team. Each scrum team has one
scrum master. The principal respon-
sibilities of the scrum master are
protecting the team from outside
interference, taking ownership of
blockers raised by the team, and
assuring that the team follows the
scrum process.

Sprint. A short iteration in scrum.
Typical industry practice is one to
two weeks. All work undertaken by
a team happens in the context of a
sprint.

Sprint Backlog. The work items
from the product backlog that a
scrum team agrees to complete
during a given sprint. Creating the
sprint backlog from the product
backlog is the first activity that
occurs during a sprint.

Story Point. A unitless measure of
relative complexity of a user story.

INVEST. Acronym describing the
characteristics of a good user story:
(I)ndependent of other user stories,
(N)egotiable in terms of how the
work may be accomplished, or in
terms of how it might be divided
into smaller stories, (V)aluable
to the business, (E)stimatable for
level of effort, (S)mall enough to be
worked on in a sprint, (T)estable as
to whether the software works as
intended.

Iteration. See Sprint.

Product Backlog. The entirety of the
user stories that a scrum team may
work on. All requirements, ordered
by their value to the business. The

product owner is responsible for the
product backlog.

Product Owner. Role on a scrum
team responsible for representing
the business. Each scrum team has
one product owner. The product
owner owns the product backlog
and is responsible for working with
the team to answer questions about
desired functionality and ways it
could be achieved and for reviewing
and approving complete user stories.

Retrospective. Scrum ceremony at
the end of every sprint during which
the team reflects on how they can
tune and adapt their behavior to
become more effective.

Velocity. A measurement of how
much work a team can undertake
successfully in a sprint based on how
much work the team has under-
taken in previous sprints. Typically,
the average of the number of story
points delivered successfully in the
previous three sprints.

XP (Extreme Programming).
Software development practice
teams frequently use to augment
scrum, as scrum contains no actual
software development practices of
its own. ●

AGILE
DICTIONARY

BY KEITH McMILLAN

©2016 (ISC)2 Incorporated. All rights reserved.

mailto:kmcmillan%40adeptechllc.com?subject=

